使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树(一个节点到其他所有节点的最短路径)。该算法常用于路由算法或者作为其他图算法的一个子模块。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

算法思想:

设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了)

第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

算法步骤:

  1. 初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则(u,v)正常有权值,若u不是v的出边邻接点,则(u,v)权值为∞。

  2. 从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

  3. 以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

  4. 重复步骤2和3直到所有顶点都包含在S中。

Dijkstra算法(Java实现)

public class Dijkstra {
    private static int M = 10000; //此路不通

    public static void main(String[] args) {
        //邻接矩阵
        int[][] weight = {
                {0, 10, M, 30, 100},
                {M, 0, 50, M, M},
                {M, M, 0, M, 10},
                {M, M, 20, 0, 60},
                {M, M, M, M, 0}
        };

        int start = 0;
        int[] shortPath = dijkstra(weight, start);

        for (int i = 0; i < shortPath.length; i++)
            System.out.println("从" + start + "出发到" + i + "的最短距离为:" + shortPath[i]);
    }

    public static int[] dijkstra(int[][] weight, int start) {
        //接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
        //返回一个int[] 数组,表示从start到它的最短路径长度
        int n = weight.length;      //顶点个数
        int[] shortPath = new int[n];  //保存start到其他各点的最短路径
        String[] path = new String[n];  //保存start到其他各点最短路径的字符串表示
        for (int i = 0; i < n; i++)
            path[i] = new String(start + "-->" + i);
        int[] visited = new int[n];   //标记当前该顶点的最短路径是否已经求出,1表示已求出

        //初始化,第一个顶点已经求出
        shortPath[start] = 0;
        visited[start] = 1;

        for (int count = 1; count < n; count++) {   //要加入n-1个顶点
            int k = -1;        //选出一个距离初始顶点start最近的未标记顶点
            int dmin = Integer.MAX_VALUE;
            for (int i = 0; i < n; i++) {
                if (visited[i] == 0 && weight[start][i] < dmin) {
                    dmin = weight[start][i];
                    k = i;
                }
            }

            //将新选出的顶点标记为已求出最短路径,且到start的最短路径就是dmin
            shortPath[k] = dmin;
            visited[k] = 1;

            //以k为中间点,修正从start到未访问各点的距离
            for (int i = 0; i < n; i++) {
                if (visited[i] == 0 && weight[start][k] + weight[k][i] < weight[start][i]) {
                    weight[start][i] = weight[start][k] + weight[k][i];
                    path[i] = path[k] + "-->" + i;
                }
            }
        }
        for (int i = 0; i < n; i++) {
            System.out.println("从" + start + "出发到" + i + "的最短路径为:" + path[i]);
        }
        System.out.println("=====================================");
        return shortPath;
    }
}

运行结果:

0出发到0的最短路径为:0-->00出发到1的最短路径为:0-->10出发到2的最短路径为:0-->3-->20出发到3的最短路径为:0-->30出发到4的最短路径为:0-->3-->2-->4
=====================================
从0出发到0的最短距离为:00出发到1的最短距离为:100出发到2的最短距离为:500出发到3的最短距离为:300出发到4的最短距离为:60

results matching ""

    No results matching ""